
Distributed Abductive Reasoning with Constraints

(Extended Abstract)
Jiefei Ma Alessandra Russo Krysia Broda Emil Lupu
Department of Computing, Imperial College London, United Kingdom, SW7 2AZ

{jm103,ar3,kb,ecl1}@doc.ic.ac.uk

ABSTRACT
Abductive inference has many known applications in multi-
agent systems. However, most abductive frameworks rely
on a centrally executed proof procedure whereas many of
the application problems are distributed by nature. Confi-
dentiality and communication overhead concerns often pre-
clude transmitting all the knowledge required for centralised
reasoning. We present in this paper a novel multi-agent ab-
ductive reasoning framework underpinned by a flexible and
extensible distributed proof procedure that permits collabo-
rative abductive reasoning with constraints between agents
over decentralised knowledge.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms

Keywords
Multi-agent Reasoning, Abductive Logic Programming

1. INTRODUCTION
Abductive reasoning is a powerful inference mechanism

that can generate conditional proofs. The combination of
Abduction and Logic Programming (ALP) [5] has many
known applications, such as planning, scheduling, cognitive
robotics, medical diagnosis and policy analysis [3]. However,
most abductive frameworks [6, 4, 7] rely on a centrally exe-
cuted proof procedure whereas many of the application prob-
lems are distributed by nature. Confidentiality and commu-
nication overhead concerns often preclude transmitting all
the knowledge required for centralised reasoning. Recently,
ALIAS [1] and DARE [8] have shown how to distribute ab-
ductive computation in a collaborative system. However,
their distributed proof procedures, which are based on the
well-known Kakas-Mancarella procedure [6], do not support
constructive negation [10] and cannot compute non-ground
conditional proofs. Hence they cannot be used for applica-

Cite as: *������#��� ���#���� 5����	�	� ���� ?�	�����	�� ��+��	���
��������� H����� �� ������	��� 5#���� J�"��� ����� �	� �
�� K#�#�
Proc. of 9th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2010)� ��	 ��� I��A� J�
�	A�� K���L��	��
K#A �	� ��	 ����$�� �"� &MC&;� %M&M� .���	��� ?�	���� ��$�
?��"����� c© %M&M� �	���	����	�� F�#	�����	 ��� �#��	�
�#� ���	�� �	�
 #������	� �"���
� ����$����
��$����$ ��� ������ ��������$

tions such as scheduling and planning involving time and
cost, which require constraint processing [11].

In order to overcome this limitation, we propose DAREC,
a distributed abductive logic programming framework un-
derpinned by a general and customisable proof procedure
that permits collaborative abductive reasoning with con-
straint processing between decentralised (computational logic)
agents. The collaborative reasoning can be seen as a state
rewriting process, where the reasoning state, initially con-
taining just the query, is exchanged between the agents.
Agents rewrite the state during their local inference by adding
relevant (non-ground) assumptions and (dynamically gener-
ated) constraints that can then be checked for global consis-
tency. The answer can then be extracted from the final state
when the overall reasoning succeeds. DAREC can be applied
to both closed and open multi-agent systems, i.e. whether the
set of agents is fixed or changes dynamically.

2. FRAMEWORK
Let L be a predicate logic language consisting of three

disjoint sets of predicates: abducible, non-abducible and con-
straint. Each agent in DAREC has a unique identifier id

and can be modeled with an abductive framework Fid =
〈Π,AB, I〉, where Π is a constraint logic program called the
background knowledge, AB is a set of abducible predicates,
and I is a set of integrity constraints of the form ← B where
B is a conjunction of literals over L. Given a set Σ of such
agents, the DAREC framework Fdis is 〈Σ, Πdis,AB, Idis〉,
where (a) Πdis =

S
i∈Σ Πi, (b) Idis =

S
i∈Σ, and (c) AB =

ABi = ABj for any i, j ∈ Σ, which implies that all the agents
agree on the same set of abducibles. Although semantically
Πdis and Idis are the unions of all the agent background
knowledge and integrity constraints respectively, they are
not physically centralised.

Given a query Q (a conjunction of literals over L called
the goals), a DAREC answer w.r.t. Fdis is a pair 〈Δ, θ〉,
such that: (i) Δ is a set of abducible atoms, θ is a set of
variable substitutions; (ii) Πdis ∪Δ |= Qθ; and (iii) Πdis ∪
Δ |= Idis. Thus, condition (iii) defines the requirement of
global consistency – the answer is consistent with the overall
agent integrity constraints. This is different from ALIAS
where only local consistency is guaranteed, i.e. the answer
is consistent with each agent’s integrity constraints locally.

3. PROOF PROCEDURE
The DAREC proof procedure assumes that agents (1) ex-

ecute the proof procedure docilely when requested, and (2)
can find out what non-abducibles are known by (i.e. defined
in) other agents. The former ensures that the agents are

1381

1381-1382

willing to cooperate and will not sabotage the collaboration.
The latter enables the agents to know how to cooperate (i.e.
who to ask for help). To achieve this, we may simply assume
the availability of a “yellow page” directory, which is accessi-
ble by all agents and records what non-abducible predicates
are defined by who. Such assumption can be removed when
protocols such as auction or contract net are adopted.

When one agent receives an initial query, an initial global
state is created. The state can then be passed around the set
of agents like a “token”. There are two main components of
the state: the set of remaining goals (i.e. initially containing
only the query) and an (initially empty) store for accumu-
lating the intermediate computational results, such as the
abducibles and constraints collected along the collaboration,
as well as the dynamic integrity constraints (called denials)
generated for the global negation as failure (NAF) [2] pro-
cess. In addition, each agent may tag a non-abducible goal,
an abducible or a denial in the state with its identifier. This
meta-data is also passed along with the state and its usage
will be described shortly. The state can be possessed by one
agent at any time, and can be modified by the agent through
abductive inference with ten local inference rules, which are
extended from those of ASystem [7]. In addition, there
are three transitional inference rules, namely TR (Receive
State), TH (Request for Help) and TC (Request for Check),
used by an agent to process a received state or a state to be
sent out. For instance, when an agent is stuck at reducing
a non-abducible goal locally, i.e. due to its lack of knowl-
edge, it may pass the state to another agent (e.g. discovered
from the directory) for help, by the TH rule. Furthermore,
such state passing may be postponed by the agent: if there
are outstanding goals, the non-abducible goal can be tem-
porarily delayed and the agent can continue with the local
inference. Whenever a new abducible or denial is collected,
it must be checked eventually by all agents in order to en-
sure global consistency. This is enforced by the TC and TR
rules: the former urges an agent to pass the state to another
who has not checked the new abducibles or denials, and
the latter presses the recipient to resolve the abducibles and
denials with its local knowledge and integrity constraints,
which may subsequently generate new goals. Thus, the tag-
ging meta-data in the state can be used to prevent the same
goal being delayed and avoid the same abducible/denial be-
ing checked twice by the same agent. The collaboration
terminates and succeeds when a solved state, in which no
goal remains and all abducible/denials have been checked
by all agents, is obtained. A DAREC answer can then be
extracted from the solved state.

The DAREC proof procedure is sound and complete w.r.t.
the three-valued semantics for abductive logic programs [9].
A working prototype has been implemented in Prolog 1.

4. EXTENSIONS
Depending on the application needs, we consider two ex-

tensions for the DAREC framework described: separation of
global and local non-abducibles, and support for open MAS.
With the former, agents can model private knowledge using
the local non-abducibles, whose global NAF processes are
not needed. With the latter, agents are allowed to join or
leave the collaboration at will. To achieve this, the global
state also records the set of agents that have ever possessed
it. Whenever an agent from the set leaves, the collaboration

1
http://www.dcc.fc.up.pt/~vsc/Yap/

must “backtrack” from the point when the agent was first
sent the state.

5. CONCLUSION
Token passing is a simple but effective way of coordinating

agent collaboration. Unlike DARE and ALIAS, the DAREC
proof procedure does not interleave between the abductive
and consistency derivations. It is more flexible as it allows
the agents to decide when to request for help and consistency
check, which can reduce communications and result in per-
formance gain. The information passed between agents is
minimal, as only the exchangeable tasks (i.e. goals), partial
answer (i.e. the abducibles) and the consistency constraints
(i.e. denials) are kept in the global state token. The tagging
meta-data is merely recorded and used for efficiency.

As future work we will extend DAREC to allow also local
abducibles, which agents can collect to form the global an-
swer but do not pass to others. Since we aim to use DAREC
for real distributed applications deployed on resource con-
strained devices such as PDAs and smart-phones, we also
aim to benchmark different rule and goal selection strate-
gies to evaluate their impact on scale-down to small devices
and scale-up to many agents and rules.

6. ACKNOWLEDGMENTS
This research is continuing through participation in the Interna-

tional Technology Alliance sponsored by the U.S. Army Research

Laboratory and the U.K. Ministry of Defence.

7. REFERENCES
[1] A. Ciampolini, E. Lamma, P. Mello, F. Toni, and

P. Torroni. Cooperation and competition in alias: a
logic framework for agents that negotiate. Annals of
Math. and AI, 37(1–2):65–91, 2003.

[2] K. Clark. Negation as failure. Logic and Databases,
pages 293–322, 1978.

[3] R. Craven, J. Lobo, J. Ma, A. Russo, E. Lupu,
A. Bandara, S. Calo, and M. Sloman. Expressive
policy analysis with enhanced system dynamicity. In
ASIACCS 09, 2009.

[4] U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and
F. Toni. The CIFF proof procedure for abductive logic
programming with constraints. In In Proc. JELIA04,
pages 31–43. Springer, 2004.

[5] A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive
logic programming. Journal of Logic and
Computation, 2(6):719–770, 1992.

[6] A. C. Kakas and P. Mancarella. Abductive logic
programming. In LPNMR, pages 49–61, 1990.

[7] A. C. Kakas, B. V. Nuffelen, and M. Denecker.
A-system: Problem solving through abduction. In
IJCAI, pages 591–596, 2001.

[8] J. Ma, A. Russo, K. Broda, and K. Clark. DARE: a
system for distributed abductive reasoning. Journal of
AAMAS, 16(3):271–297, 2008.

[9] F. Teusink. Three-valued completion for abductive
logic programs. In ALP: Proc. of the 4th Int. Conf. on
Algebraic and logic programming, pages 171–200, 1996.

[10] M. Wallace. Negation by constraints: A sound and
efficient implementation of negation in deductive
databases. In SLP, pages 253–263, 1987.

[11] M. Wallace. Constraint logic programming. In
Computational Logic: Logic Prog. and Beyond, pages
512–532. Springer-Verlag, 2002.

1382

